Predefined LLM

In xFlow, the AI Agent State leverages predefined large language model (LLM) configurations to streamline the integration of AI capabilities into business workflows. These configurations are designed to provide optimal performance and reliability by incorporating strategies like fallback mechanisms. This documentation details the predefined LLM configurations that developers can use by specifying the aiModel parameter in the AI Agent State.

Common Parameters

All predefined LLM configurations in xFlow share the following common parameters:

  • Temperature: 0.0

  • Timeout: PT60S

Predefined LLM Configurations

1. GPT-4o

  • aiModel: gpt-4o

  • Strategy: single

  • Provider: openai

  • Model: gpt-4o

2. LLaMA3-70B-8192

  • aiModel: llama3-70b-8192

  • Strategy: Fallback on status codes 429 and 400

  • Providers:

    • Primary: groq

    • Secondary: openai

  • Models:

    • Primary: llama3-70b-8192

    • Fallback: gpt-4o

3. Mixtral-8x7B-32768

  • aiModel: mixtral-8x7b-32768

  • Strategy: Fallback on status codes 429 and 400

  • Providers:

    • Primary: Groq

    • Secondary: OpenAI

  • Models:

    • Primary: mixtral-8x7b-32768

    • Fallback: gpt-4o

4. Gemini-1.5-Pro-Latest

  • aiModel: gemini-1.5-pro-latest

  • Strategy: Fallback on status codes 429 and 400

  • Providers:

    • Primary: google

    • Secondary: openai

  • Models:

    • Primary: gemini-1.5-pro-latest

    • Fallback: gpt-4o

Usage Example

To use one of these predefined LLM configurations in your AI Agent State, simply specify the aiModel parameter in the state definition. Here is an example of how to configure an AI Agent State using the gpt-4o model:

Last updated